|
Appunti scientifiche |
|
Visite: 1964 | Gradito: | [ Picolo appunti ] |
Leggi anche appunti:La Sezione Aurea - Tra Matematica, Arte e NaturaLa Sezione Aurea Tra Matematica, Arte e Natura A coloro Le equazioni di Maxwell in forma differenziale (III)Le equazioni di Maxwell in forma differenziale (III) Il nostro punto di partenza Integrale definitoINTEGRALE DEFINITO E' utile per il seguito la seguente nozione |
Differenziale di una funzione
1. Dimostrazione
Il rapporto incrementale della (1) potrà scriversi come:
Nella quale, evidentemente, si ha
Definizione: si chiama differenziale di una funzione relativo al punto e all'incremento , il prodotto della derivata per l'incremento
In simboli:
Quindi, applicando alla (3):
Dividiamo per
Ciò significa che, se è una funzione derivabile, l'incremento e il differenziale di , relativi allo stesso incremento della variabile indipendente, differiscono per un infinitesimo di ordine superiore rispetto a , cioè
per un molto piccolo.
2. Significato geometrico del differenziale
Nel triangolo si ha
Secondo il significato geometrico e goniometrico di derivata, . Quindi:
Allora il segmento rappresenta il differenziale della funzione in
Di conseguenza, quando la variabile indipendente passa da a
la funzione ha un incremento uguale alla lunghezza del segmento
la tangente in ha un incremento uguale alla lunghezza del segmento , e tale incremento è proprio il differenziale della funzione in
Appunti su: differenziale di una funzione significato geometrico, |
|
Appunti Geografia | |
Tesine Contabilita | |
Lezioni Fisica | |