Appunti per Scuola e Università
humanisticheUmanistiche
Appunti e tesine di tutte le materie per gli studenti delle scuole medie riguardanti le materie umanistiche: dall'italiano alla storia riguardanti le materie umanistiche: dall'italiano alla storia 
sceintificheScientifiche
Appunti, analisi, compresione per le scuole medie suddivisi per materie scientifiche, per ognuna troverai appunti, dispense, esercitazioni, tesi e riassunti in download.
tecnicheTecniche
Gli appunti, le tesine e riassunti di tecnica amministrativa, ingegneria tecnico, costruzione. Tutti gli appunti di AppuntiMania.com gratis!
Appunti
scientifiche
Astronomia cosmologiaChimicaEconomiaEducazione fisicaFisica
MatematicaStatistica


AppuntiMania.com » Scientifiche » Appunti di Chimica » Lo stato Gassoso

Lo stato Gassoso




Visite: 1917Gradito:apreciate 5-stela [ Medio appunti ]
Leggi anche appunti:

Nomenclatura tradizionale e nomenclatura sistematica (IUPAC)


Nomenclatura tradizionale e nomenclatura sistematica (IUPAC) La nomenclatura

Relazione di agenti inquinanti - determinazione della durezza totale dell'acqua


Relazione di agenti inquinanti Titolo : determinazione della durezza totale

Il Processo Dry


Il Processo Dry Il primo processo di realizzazione della doppia giunzione
immagine di categoria

Scarica gratis Lo stato Gassoso

Lo stato Gassoso


Il gas è uno stato fluido della materia che riempie il recipiente occupato e si lascia facilmente comprimere.

I gas alle stesse condizioni di temperatura e pressione hanno caratteristiche molto simili tra loro.

Le proprietà macroscopiche dei gas sono interpretate attraverso lo studio molecolare e la cosiddetta Teoria cinetica dei gas.

Definiamo la condizione di gas ideale la condizione a cui tutti i gas tendono ad assomigliare diminuendo la temperatura e la pressione. Le proprietà di un gas ideale sono:

Le particelle del gas ideale non hanno dimensioni, e quindi sono prive di massa: le particelle del gas risultano così pure astrazioni geometriche. Il gas ideale quindi riempie veramente tutto il volume del suo recipiente, mentre il gas reale non lo occupa tutto perché una parte è occupato dal volume delle particelle stesse. Il gas ideale quindi è comprimibile all'infinito (V=0).

Nel gas ideale le particelle non interagiscono tra di loro.

Le particelle del gas ideale si muovono di moto rettilineo uniforme urtandosi tra di loro e urtando le pareti del recipiente: ciò si spiega ricordando che non c'è interazione tra le particelle. Gli urti sono elastici, quindi non si perde energia.

L'Energia Cinetica media delle particelle è direttamente proporzionale alla temperatura del gas:

Ec T

Quest'ultima proprietà è stata dimostrata da Graham e Hund. Avendo infatti due gas alla stessa pressione e a una certa temperatura t°C, le loro energie cinetiche medie sono uguali:

½ mava2 = ½ mbvb2           _va2_ = _mb_

vb2 ma

_va_ mb_ Legge di Graham

vb ma

La legge di Graham quindi dice che il rapporto tra la velocità media del primo gas e quella del secondo gas è uguale alla radice quadrata del rapporto tra i pesi molecolari.

Graham dimostrò questa legge anche sperimentalmente. Abbiamo un tubo di vestro di lunghezza di 1 m, in cui vengono inseriti nello stesso istante dell'Acido Cloridrico HCl e dell'ammoniaca NH3. Avendo un peso molecolare diverso uno sarà più veloce dell'altro (in questo caso acido cloridrico è più pesante e quindi più lento) e si incontreranno a una certa distanza formando sul vetro del tubo un anello bianco di Cloruro di Ammonio (Nh4Cl(s)).

Si calcola il tempo e quindi la velocità, dimostrando sperimentalmente la validità della Legge di Graham.

La Legge di Graham può anche essere scritta in un altro modo che è il più usato perché più pratico. Si fa percorrere a due gas differenti uno stesso spazio e si calcola il tempo di percorrenza: esso è proporzionale alla radice quadrata del rapporto tra le masse molecolari dei due gas:

_tb_ mb_

ta ma

Per poter definire meglio un gas dobbiamo prima definire le sue tre principali variabili : la pressione, il volume, la temperatura.





Pressione

Con pressione si intende il numero di urti e la forza F che le particelle hanno contro una determinata superficie s del recipiente

P = _F_ = Newton = 1 Pascal

S          m2

Il Pascal è l'unità di misura della pressione e i suoi sottomultipli sono il bar e il mbar.

Bar = 105 Pa   mbar = 102 Pa

Altre unità di misura normalmente usate sono l'atmosfera atm definita come la pressione esercitata da una colonnina di mercurio alta 76cm; altra misura ancora è il torr (in onore del grande fisico Torricelli) definita come la pressione esercitata da una colonnina di Mercurio alta 1 mm. Le unità di conversione sono:

1 atm = 760 torr 1 atm = 101325 Pa

Volume

I gas non hanno volume, ma tendono ad occupare interamente il loro recipiente, quindi il volume di un gas è uguale a quello del suo recipiente. Le unità di misura sono il litro L, il millilitro ml oppure il dm3 e il cm3.

Temperatura

La temperatura esprime lo stato termico di un corpo.

Nella vita di tutti i giorni la scala usata è quella Celsius, ma nello studio dei gas è usata la temperatura assoluta T (detta temperatura Kelvin) col seguente rapporto di conversione:

T = °C + 273

Le Leggi dei Gas

Vediamo ora come varia lo stato di un gas mantenendo prima la temperatura, poi la pressione e infine il volume costanti.

Legge di Boyle



p2

 
Boyle si accorse che, mantenendo la temperatura di un gas costante, se si raddoppiava la pressione su questo gas, diminuiva il volume. Egli quindi enunciò una legge che và sotto il nome di Legge di Boyle che dice che la pressione di una gas e il suo volume a temperatura costante sono direttamente proporzionali. Il grafico di questa legge è un ramo d'iperbole.

V

P1v1 = p2v2

p1

PV = K

V1 V1


V2 V2

p1 p2




Legge di Charles-Gay Lussac

Charles e Gay-Lussac si accorsero che mantenendo la pressione cotante, intendendo con Vo il volume che il gas ha a 0°C, facendo aumentare la temperatura da 0°C a 1°C il volume aumentava di 1/273 del Vo. Da questa esperienza enunciarono la cosiddetta Legge di Charles- Gay Lussac che dice che il volume di una data quantità di gas in un recipiente mantenuto a pressione costante è direttamente proporzionale alla temperatura assoluta:

V = Vo + 1/273 Vo t

Ponendo a = 1/273 avremo:

V = Vo (1+ a t) V = Vo aT                     V

Il grafico di questa legge è una retta.

0°K T




Da questo grafico per estrapolazione possiamo dedurre qual è la temperatura in cui il volume si annulla, ossia -273,14°C che rappresenta lo zero assoluto della scala Kelvin. Alla temperatura di -273,14°C quindi c'è il gas ideale. A questa temperatura ci si è avvicinati ma non si è mai arrivati, e questo fa capire quanto sia una nozione limite il gas ideale.

Dalla legge di Charles-Gay Lussac si può ricavare una formula più pratica, ossia:

V1 = T1

V2 T2

Dalla legge di Charles e Gay-Lussac si può ricavare un'altra legge: La pressione di una data quantità di gas in un recipiente mantenuto a volume costante è direttamente proporzionale alla temperatura assoluta:

p = po (1+ at)


Legge generale dei gas

La legge generale dei gas vale solamente per i gas ideali e riunisce le leggi di Boyle e Charles-Gay Lussac.

Abbiamo una mole di gas a 0°C con un certo volume iniziale Vo e una certa pressione iniziale po. Facciamo ora subire una trasformazione isobara a questo gas: le sue tre variabili quindi saranno:

0°C Vo Po

t°C V1 Po V1 = Voat [1]

Questa trasformazione è regolata dalla legge di Charles-Gay Lussac.

Facciamo ora invece subire una trasformazione isoterma a questo gas, le tre variabili diventano:

0°C Vo Po

t°C V1 Po

t°C V2 P P0V1 = PV2 [2]

Ricavando quindi V1 dalla [2] e sostituendolo nella [1] avremo:

PV = Vo a T po PV = Vo po

T 273

Per la Legge di Avogadro noi sapevamo che a 0°C e a 1 atm di pressione, il volume di un gas ideale è 22,414 litri. Quindi sostituendo avremo:

PV = 22,414

273

Quel rapporto è detto costante dei gas ed è uguale a:

R= 0,0821

Siccome noi avevamo n moli, allora la legge generale dei gas è:

PV = nRT

Da questa legge possiamo ricavare le dimensioni di R che sono:

R = 0,0821 l atm mol-1 K-1

Se si fa il rapporto membro a membro delle leggi di un gas che cambia tutti e tre i parametri avremo:

P1V1 = nRT1 P2V2 = nRT2 P1V1 = P2V2

T1 T2

Quindi possiamo affermare che la Legge di Boyle è contenuta nella Legge generale dei Gas.

La Legge generale dei gas può essere ancora trasformata e calcolata in funzione della densità di un gas. Infatti se intendiamo il numero di moli come il rapporto tra il peso e il peso molecolare del gas(n = g/M), e la densità il rapporto tra il peso e il volume del gas (d = g/V), avremo

PV = _g_ RT PM = d RT

M

Ponendo la pressione P = F/S avremo:

PV = F/S V = F l = Lavoro      L= PV



Proponiamoci ora di calcolare alter dimensioni di R:

R = _PV_ = 101325 8,314 J mol-1 K-1

nT n 273

Ossia R trasformato in calorie è:

R = 1,987 cal mol-1 K-1

Legge di Dalton sui miscugli gassosi

Dalton studiò un recipiente in cui vi era un miscuglio formato da due gas. Dalton arrivò alla conclusione che La pressione totale a cui è sottoposto un miscuglio è la stessa delle pressioni parziali, intendendo con pressione parziale la pressione che eserciterebbe ogni singolo gas se da solo occupasse tutto il volume del recipiente.

Ptot = P1 + P2

Questa legge è facilmente dimostrabile applicando la legge generale dei gas ai due componenti del miscuglio:

p1 V1 = n1 RT          [1]

p2 V2 = n2 RT          [2]

(p1 + p2) V = (n1 + n2) RT [3] Ptot = P1 + P2

Frazione Molare

Se facessimo il rapporto membro a membro tra la [1] e la [3] e tra la [1] e la [2], avremo:

_p1_ = _n1_                _p2_ = _n2_

ptot ntot ptot ntot

Possiamo introdurre così il concetto di frazione molare, cioè in che percentuale è presente nel miscuglio (ossia è la sua concentrazione):

Xi = numero di moli del componente

numero di moli totali

Quindi se consideriamo due gas A e B che compongono un miscuglio, le loro frazioni molari sono:

Xa = ___na__ Xb = ___nb__ Xa + Xb = na + nb = 1

na + nb na + nb na + nb

Quindi la somma delle frazioni molari dei singoli componenti di un miscuglio è sempre uguale a 1. Quindi un altro modo per scrivere la Legge di Dalton, e per calcolare le pressioni parziali è:

P1 = Ptot Xi Ptot = a pi

Grado di dissociazione

Dalla legge PM = dRT possiamo ricavare la densità:

d = PM

RT

Si scoprì che in alcuni gas c'era una densità anomala dovuta alla dissociazione. Ad esempio nel Pentacloruro di Fosforo è:

PCl5 PCl3 + Cl2   (si formano due molecole)

Quindi per correggere la legge generale dobbiamo parlare del grado di dissociazione a

a = _______n (moli delle molecole dissociatesi)_____

no (moli iniziali prima della dissociazione)

Se si dissociano tutte le molecole allora a = 1, mentre se non se ne dissocia nessuna il grado di dissociazione (sempre espresso in percentuale) è nullo.


Calcolo del numero totale di particelle

Il numero totale di particelle di un gas è uguale alla somma del numero delle particelle indissociate e del numero di particelle delle dissociazione.

ntot = n (particelle indissociate) + ndiss (particelle della dissociazione)

devo così introdurre n, cioè il numero finale cui dà luogo la dissociazione di una molecola.

ndiss = a no

ntot = no - ndiss

Se sostituisco il valore trovato prima avremo:

ntot = no (1 - a an) ntot = no [1 + a n

PV = no[1 + a n-1)]RT

Questa legge è di validità ancora più generale della legge dei gas.

Gas Reali

Gli esperimenti di Boyle, Gay-Lussac e Charles riguardavano il gas ideale, cioè un gas ala temperatura assoluta, a pressione zero e volume nullo. Il gas ideale è però solamente un'astrazione, in quanto non è possibile raggiungere quelle condizioni di equilibrio.

Infatti se consideriamo il fattore di comprimibilità (Z = PV/RT), esso nei gas ideali è uguale a 1, ma nei gas reali, quelli che si possono trovare in natura, esso è minore di 1.

I gas reali hanno alcune proprietà:                  Z

I gas assomigliano al gas ideale, a bassa pressione

A media pressione la particella si comprime e il volume è minore

rispetto al volume occupato in uguali condizioni dal gas ideale: per

questo motivo il fattore di comprimibilità è minore di 1. Se dovessimo

quindi rappresentare il fattore di comprimibilità avremo:

Vediamo quindi che se essi si comprimono, arriveranno ad un certo

punto che il loro fattore di comprimibilità comincerà ad aumentare

in quanto le particelle cominceranno a respingersi tra loro, fino ad

arrivare a valori z>1.                                                                                                                           P

Altra proprietà è che man mano che aumenta la temperatura i gas diventano molto simili al gas ideale.

Equazione di Van der Waals

L'equazione di Van der Waals è l'equazione che descrive i gas reali. Essa è:

(P + _a_) (V - b) = RT

V2

Spieghiamo ora i termini di quest'equazione. Il termine V è il volume a disposizione delle particelle nel gas reale, ed è minore del volume a disposizione delle particelle nel gas ideale. Il termine correttivo b è detto covolume (covolume = spazio occupato dalle particelle)e il suo valore è circa uguale a 4 volte il volume delle particelle. Infatti come si vede nella figura allato i centri di due molecole non possono avvicinarsi ad una distanza inferiore del diametro di una data molecola. Calcolando il volume avremo:

4/3 p (2 r)3            4/3 p 8 r3              4[4/3 pr3]

b = 4 Vol N

La Pressione P esercitata dalle particelle nel gas reale minore è minore di quella esercitata dalle particelle nel gas ideale. Il termine a è un termine correttivo ed è dovuto all'effetto delle attrazioni tra le molecole ed è una costante empirica caratteristica del gas considerato.


Il numero di urti con la parete, in un dato tempo, è proporzionale alla densità del gas e ciascun urto è attenuato da una Forza di attrazione verso l'interno del recipiente che è proporzionale alla densità delle molecole che esercitano l'attrazione. In definitiva il fattore di correzione a per la pressione P è proporzionale al quadrato del volume.

P urti P Forza di attrazione P d2

d2 1/V2


A bassa pressione il volume del gas è grandissimo, quindi il termine (V-b) è circa uguale a V e inoltre il termine a/V2 è così piccolo che può essere trascurato: quindi a bassissima pressione l'equazione di Van der Waals all'incirca è uguale all'equazione generale dei gas, e quindi il comportamento del gas reale si avvicina a quello del gas ideale.

In definitiva passando dall'equazione di stato PV = RT all'equazione di Van der Waals si è passati da un'equazione unica, valida per ogni gas a comportamento ideale, ad un'equazione valida nella sua forma generale per tutti i gas reali, ma che, per la presenza delle costanti a e b, rappresenta tanti casi diversi quanti sono i gas a cui viene applicata.

Diamo ora di seguito alcune definizioni:

Gas Incoercibili: Sono detti gas incoercibili quei gas che non diventano mai liquidi.

Gas Liquefabili: Sono detti gas liquefabili quei gas che possono diventare liquidi.

Temperatura Critica: Si definisce temperatura critica quella temperatura alla quale il gas si liquefa. Ad esempio l'ossigeno a temperatura di -118°C e con una pressione di 50 atm diventa liquido.

Gas: Viene detta gas una sostanza che ha la temperatura critica al di sotto della temperatura ambiente (25°).

Vapori: Si dicono vapori quelle sostanze che hanno una temperatura critica al di sopra della temperatura ambiente (25°C).


Scarica gratis Lo stato Gassoso
Appunti su:



Scarica 100% gratis e , tesine, riassunti



Registrati ora

Password dimenticata?
  • Appunti superiori
  • In questa sezione troverai sunti esame, dispense, appunti universitari, esercitazioni e tesi, suddivisi per le principali facoltà.
  • Università
  • Appunti, dispense, esercitazioni, riassunti direttamente dalla tua aula Universitaria
  • all'Informatica
  • Introduzione all'Informatica, Information and Comunication Tecnology, componenti del computer, software, hardware ...

Appunti Biologia Biologia
Tesine Ingegneria tecnico Ingegneria tecnico
Lezioni Geografia Geografia